

Art Vault
Submitted To: Dr. Irfan Hameed

Submitted By: Ehmaan Shafqat

 Course: Database system

Pakistan Institute of Engineering and

Applied Sciences

Description:

ArtVault is a comprehensive art gallery management system designed to streamline operations by managing

artworks, artists, customers, orders, events, and employees. It tracks artwork details, artist profiles, customer

orders, event management, and employee assignments. The system also handles ticketing, sales, and inventory

management, ensuring smooth gallery operations. With a relational database structure, ArtVault provides an

efficient platform for managing and analyzing gallery data, improving operational efficiency and customer

experience.

Business rules:

Following are the business rules for this project:

1. Person Identification:

 Each person must have a unique CNIC for identification.

 Every person can act as a customer, employee, or artist, but basic personal information is stored in a

single Person record.

2. Artwork Management:

 Each artwork must be associated with exactly One Artist.

 Each artwork must have a Unique Identifier.

 There is only One Piece of each Artwork.

 Artworks can only have a status of "Available", "Sold", or "On Loan".

 An artwork’s SellDate cannot be before its StockedDate.

3. Artist Management:

 Each Artist must have a unique identifier (ArtistID).

 Artists can create Multiple Artworks, but an artwork must belong to only One Artist.

 An artist cannot be deleted if they have associated artworks in the system.

4. Customer Management:

 Each Customer must have a unique identifier (CustomerID).

 A customer can purchase Multiple artworks.

5. Order Management:

 Every Order must be linked to exactly one customer.

 Order can have multiple Order lines.

 An order line cannot reference the same artwork multiple times for the same order.

6. Event Management:

 Each Event must have a unique identifier (EventID).

 An exhibition can showcase Multiple Artworks, and an artwork can be displayed in Multiple Events.

 An event can have Multiple Employees, and an employee can be in Multiple Events.

7. Price Management:

 No price or ticket records in ArtworkPrice or TicketPrice may be deleted, ensuring an audit trail.

8. Employee Management:

 Each Employee must have a unique identifier (EmployeeID).

 An employee may be assigned to multiple events, but their role must be specified for each event.

Entities:

For ArtVault Database mangemet we select below entities:

1. Person:

Description: The Person entity represents the basic personal information of all individuals involved in the system, such as

customers, employees, and artists. It includes common attributes such as PERSON_ID, FIRST_NAME, LAST_NAME,

DATE_OF_BIRTH, and CONTACT_DETAILS. This entity serves as a foundation for other entities like Customer,

Employee, and Artist, linking them to specific individuals.

Attributes:

 PERSON_ID (PK)

 FIRST_NAME

 LAST_NAME

 DATE_OF_BIRTH

 CONTACT_DETAILS

2. Customer:

Description: The Customer entity represents individuals who make purchases (orders) from the art gallery. It inherits

from the Person entity, which means it shares personal information attributes like name and contact details. Additionally,

the Customer entity includes specific customer attributes like ACCOUNT_CREATION_DATE and a link to

PERSON_ID from the Person entity.

Attributes:

 CUSTOMER_ID (PK, FK referencing PERSON_ID)

 ACCOUNT_CREATION_DATE

 STATUS

3. Employee:

Description: The Employee entity represents individuals employed by the art gallery in various roles. It inherits from the

Person entity. Employees can have different roles such as Manager, Coordinator, or Assistant. The Employee entity

includes attributes like ROLE, SALARY, STATUS, and JOINING_DATE, along with a link to PERSON_ID from the

Person entity.

Attributes:

 EMPLOYEE_ID (PK, FK referencing PERSON_ID)

 ROLE

 SALARY

 STATUS

 JOINING_DATE

4. Artist:

Description: The Artist entity represents individuals who create artworks displayed in the gallery. Like Employee and

Customer, the Artist entity inherits from the Person entity. It may include specific attributes such as BIOGRAPHY,

GENRE, and DEBUT_YEAR, along with a reference to the PERSON_ID of the individual artist.

Attributes:

 ARTIST_ID (PK, FK referencing PERSON_ID)

 BIOGRAPHY

 GENRE

 DEBUT_YEAR

5. Event:

Description: The Event entity represents various events or exhibitions held at the gallery, such as art shows or fairs. It

includes event details like EVENT_NAME, START_DATE, END_DATE, and EVENT_LOCATION. The EVENT entity

may also be linked to employees who are working at these events.

Attributes:

 EVENT_NAME (PK)

 START_DATE

 END_DATE

 EVENT_LOCATION

Ticket:

Description: The Ticket entity represents tickets sold for events. It includes TICKET_ID, EVENT_NAME,

START_DATE, TICKET_PRICE, and EFFECTIVE_DATE, linking it to a specific event. The TICKET entity ensures

the pricing is tracked for each event.

Attributes:

 TICKET_ID (PK)

 EVENT_NAME (FK referencing Event)

 START_DATE (FK referencing Event)

 TICKET_PRICE

 EFFECTIVE_DATE

6. Artwork:

Description: The Artwork entity represents the individual pieces of art available for purchase or display in the gallery. It

includes attributes such as ARTWORK_ID, TITLE, CATEGORY, ARTIST_ID, STOCKED_DATE, and STATUS. The

ARTWORK entity links to the Artist entity via ARTIST_ID.

Attributes:

 ARTWORK_ID (PK)

 TITLE

 CATEGORY

 ARTIST_ID (FK referencing Artist)

 STOCKED_DATE

 STATUS

Price_History:

Description: The Price_History entity represents the price of an artwork at specific dates. This allows the gallery to

track price changes over time for each artwork. It includes ARTWORK_ID, PRICE, and EFFECTIVE_DATE,

forming a composite key that associates prices with particular effective dates.

Attributes:

 ARTWORK_ID (PK, FK referencing Artwork)

 PRICE

 EFFECTIVE_DATE

7. Order:

Description: The Order entity represents a customer’s purchase request in the art gallery system. It includes

order-specific details like ORDER_ID, ORDER_DATE, ORDER_STATUS, and a reference to the CUSTOMER_ID,

linking it to a customer who placed the order. Orders may contain multiple artworks, represented through the

OrderLine entity.

Attributes:

 ORDER_ID (PK)
 ORDER_DATE
 ORDER_STATUS
 CUSTOMER_ID (FK referencing Customer)

8. Order_line:

Description: The OrderLine entity represents individual items within a specific order, linking an artwork to an

order. It consists of the ORDER_ID and ARTWORK_ID, forming a composite primary key. The ORDERLINE table

allows a many-to-many relationship between Order and Artwork, where an order can contain multiple artworks.

Attributes:

 ORDER_ID (PK, FK referencing Order)

 ARTWORK_ID (PK, FK referencing Artwork)

Relationships:

Unary Relationship:

In an employee hierarchy, an Employee entity might have a unary relationship where an employee has a "supervisor" who

is also an employee. This relationship would link an employee to another employee, indicating the supervisory role.

Binary Relationship:

ORDER_T and CUSTOMER:

 Relationship: A customer can place multiple orders, but each order is placed by one customer.

 Cardinality: One-to-Many (1:N) from CUSTOMER to ORDER_T.

 Foreign Key: CUSTOMER_ID in ORDER_T references CUSTOMER_ID in CUSTOMER.

 ORDER_T and PERSON (via CUSTOMER):

 Relationship: Each customer is represented by a person, and orders contain customer details.

 Cardinality: One-to-One (1:1) between CUSTOMER and PERSON.

 Foreign Key: CUSTOMER_ID in ORDER_T references PERSON_ID in PERSON (through

CUSTOMER).

 ARTWORK and ARTIST:

 Relationship: Each artwork is created by one artist, and an artist can create multiple artworks.

 Cardinality: One-to-Many (1:N) from ARTIST to ARTWORK.

 Foreign Key: ARTIST_ID in ARTWORK references ARTIST_ID in ARTIST.

ARTWORK and ARTWORK_PRICE:

 Relationship: An artwork can have multiple prices over time, each with a specific effective date.

 Cardinality: One-to-Many (1:N) from ARTWORK to ARTWORK_PRICE.

 Foreign Key: ARTWORK_ID in ARTWORK_PRICE references ARTWORK_ID in ARTWORK.

EVENT and EVENT_EMPLOYEE:

 Relationship: An event involves multiple employees, and an employee can work at multiple events.

 Cardinality: Many-to-Many (M:N) between EVENT and EMPLOYEE, represented through the

associative entity EVENT_EMPLOYEE.

 Foreign Keys:

o EVENT_NAME and START_DATE in EVENT_EMPLOYEE reference EVENT_NAME and

START_DATE in EVENT.

o EMPLOYEE_ID in EVENT_EMPLOYEE references EMPLOYEE_ID in EMPLOYEE.

 EVENT and ARTWORK:

 Relationship: An event can feature multiple artworks, and an artwork can be part of multiple events.

 Cardinality: Many-to-Many (M:N) between EVENT and ARTWORK, represented through the

associative entity EVENT_ARTWORK.

 Foreign Keys:

o EVENT_NAME and START_DATE in EVENT_ARTWORK reference EVENT_NAME and

START_DATE in EVENT.

o ARTWORK_ID in EVENT_ARTWORK references ARTWORK_ID in ARTWORK.

 TICKET and EVENT:

 Relationship: A ticket is associated with a specific event, and an event can have multiple tickets sold.

 Cardinality: One-to-Many (1:N) from EVENT to TICKET.

 Foreign Key: EVENT_NAME and START_DATE in TICKET reference EVENT_NAME and

START_DATE in EVENT.

 ORDER_T and ORDERLINE:

 Relationship: Each order can contain multiple artworks, and each artwork in an order is represented by

an order line.

 Cardinality: One-to-Many (1:N) from ORDER_T to ORDERLINE.

 Foreign Key: ORDER_ID in ORDERLINE references ORDER_ID in ORDER_T.

 ORDERLINE and ARTWORK:

 Relationship: Each order line corresponds to a specific artwork, and an artwork can be included in

multiple order lines.

 Cardinality: Many-to-One (N:1) from ORDERLINE to ARTWORK.

 Foreign Key: ARTWORK_ID in ORDERLINE references ARTWORK_ID in ARTWORK.

Associative Entities:

1. EVENT_ARTWORK (Associative Entity):

 Purpose: This entity represents the many-to-many relationship between EVENT and ARTWORK. It

tracks which artworks are featured in which events.

 Attributes:

o EVENT_NAME, START_DATE (Foreign Keys referencing the EVENT table)

o ARTWORK_ID (Foreign Key referencing the ARTWORK table)

 Primary Key: Composite of EVENT_NAME, START_DATE, and ARTWORK_ID.

 Relationship: An event can feature multiple artworks, and an artwork can be part of multiple events.

2. EVENT_EMPLOYEE (Associative Entity):

 Purpose: This entity represents the many-to-many relationship between EVENT and EMPLOYEE. It

tracks which employees are assigned to which events and their roles.

 Attributes:

o EVENT_NAME, START_DATE (Foreign Keys referencing the EVENT table)

o EMPLOYEE_ID (Foreign Key referencing the EMPLOYEE table)

o WORK_HOURS, EVENT_ROLE

 Primary Key: Composite of EVENT_NAME, EMPLOYEE_ID, and START_DATE.

 Relationship: An event involves multiple employees, and an employee can work at multiple events in

different roles.

Complete ER Diagram:

Relational Model:

Description:

1. PERSON: Stores personal details of individuals.

o Attributes: PERSON_ID (Primary Key), FIRST_NAME, LAST_NAME, CONTACT_INFO,

etc.

2. CUSTOMER: Represents customers and inherits from PERSON.

o Attributes: CUSTOMER_ID (Primary Key, Foreign Key referencing PERSON),

ACCOUNT_CREATION_DATE.

3. EMPLOYEE: Represents employees and inherits from PERSON.

o Attributes: EMPLOYEE_ID (Primary Key, Foreign Key referencing PERSON), ROLE,

SALARY, STATUS, JOINING_DATE.

4. ARTIST: Represents artists, also inheriting from PERSON.

o Attributes: ARTIST_ID (Primary Key, Foreign Key referencing PERSON), STYLE.

5. ORDER_T: Represents customer orders.

o Attributes: ORDER_ID (Primary Key), CUSTOMER_ID (Foreign Key referencing

CUSTOMER), RECIPIENT, ORDER_DATE, ORDER_STATUS, PAYMENT_METHOD.

6. ORDERLINE: Associates multiple artworks with orders.

o Attributes: ORDER_ID, ARTWORK_ID (Foreign Keys referencing ORDER_T and

ARTWORK respectively), Primary Key is a composite of ORDER_ID and ARTWORK_ID.

7. ARTWORK: Represents artwork items.

o Attributes: ARTWORK_ID (Primary Key), TITLE, CATEGORY, ARTIST_ID (Foreign Key

referencing ARTIST), STOCKED_DATE, STATUS.

8. ARTWORK_PRICE: Represents the pricing history of artworks.

o Attributes: ARTWORK_ID (Foreign Key referencing ARTWORK), PRICE,

EFFECTIVE_DATE, Primary Key is a composite of ARTWORK_ID and EFFECTIVE_DATE.

9. EVENT: Represents an event in which artworks are displayed.

o Attributes: EVENT_NAME, START_DATE (Primary Key), END_DATE,

EVENT_LOCATION.

10. TICKET: Represents tickets sold for events.

o Attributes: TICKET_ID (Primary Key), EVENT_NAME, START_DATE (Foreign Keys

referencing EVENT), TICKET_PRICE, EFFECTIVE_DATE.

11. EVENT_ARTWORK: Represents the many-to-many relationship between EVENT and ARTWORK.

o Attributes: EVENT_NAME, START_DATE, ARTWORK_ID (Foreign Keys referencing

EVENT and ARTWORK), Primary Key is a composite of these three attributes.

12. EVENT_EMPLOYEE: Represents the many-to-many relationship between EVENT and EMPLOYEE.

o Attributes: EVENT_NAME, START_DATE, EMPLOYEE_ID (Foreign Keys referencing

EVENT and EMPLOYEE), WORK_HOURS, EVENT_ROLE, Primary Key is a composite of

EVENT_NAME, EMPLOYEE_ID, and START_DATE.

Key Relationships:

 Person ↔ Customer, Employee, Artist: Inheritance relationship, where PERSON serves as the base

entity.

 Order_T ↔ Customer: A customer can place many orders, with each order linked to a specific

customer.

 Order_T ↔ Artwork: Through ORDERLINE, an order can include multiple artworks, and an artwork

can appear in multiple orders.

 Artwork ↔ Artist: Each artwork is associated with a specific artist.

 Event ↔ Artwork: Many artworks can be displayed at multiple events via EVENT_ARTWORK.

 Event ↔ Employee: Employees are assigned to events via EVENT_EMPLOYEE, allowing them to

work at multiple events.

 Event ↔ Ticket: Each event has tickets, with their prices recorded.

 Event ↔ Artwork, Event ↔ Employee: Both of these are managed through associative entities

(EVENT_ARTWORK and EVENT_EMPLOYEE), representing the many-to-many relationships.

Normalized Schema:

 All attributes of Person are atomic

 There is no partial and transitive dependency

 So person is in 3rd Normal Form

 All attributes of Customer are atomic

 There is no partial and transitive dependency

 So Customer is in 3rd Normal Form

 All attributes of Employee are atomic

 There is no partial and transitive dependency

 So Employee is in 3rd Normal Form

 All attributes of Artist are atomic

 There is no partial and transitive dependency

 So Artist is in 3rd Normal Form

 All attributes of Order are atomic

 There is no partial and transitive dependency

 So Order is in 3rd Normal Form

 All attributes of Order_Line are atomic

 There is no partial and transitive dependency

 So Order_Line is in 3rd Normal Form

 All attributes of Artwork are atomic

 There is no partial and transitive dependency

 So Artwork is in 3rd Normal Form

 All attributes of Artwork_Price are atomic

 There is no partial and transitive dependency

 So Artwork_Price is in 3rd Normal Form

 All attributes of Event_Artwork are atomic

 There is no partial and transitive dependency

 So Event_Artwork is in 3rd Normal Form

 All attributes of Event are atomic

 There is no partial and transitive dependency

 So Event is in 3rd Normal Form

 All attributes of Ticket are atomic

 There is no partial and transitive dependency

 So Ticket is in 3rd Normal Form

 All attributes of Event_Employee are atomic

 There is no partial and transitive dependency

 So Event_Employee is in 3rd Normal Form

Composite Usage Model:

Access Frequency (Per Hour):

Code:

Creating table:

Person:

The PERSON table serves as a foundational entity in the database to store general information about individuals.

This table can act as a supertype for other entities such as customers, employees, or artists.

Key Features:

1. Primary Key:

o PERSON_ID uniquely identifies each person in the table and ensures no duplicate records exist.

o A CHECK constraint enforces a specific format: NNNNN-NNNNNNN-N, where N represents digits,

aligning with standard identification formats.

2. Attributes:

o FIRST_NAME and LAST_NAME: Store the individual's name.

o EMAIL: Optional field for storing the person's email address.

o PHONE_NO: Mandatory contact number for the person.

o GENDER: Captures the gender of the individual using a single character (M, F, etc.).

o CITY, STATE, POSTAL_CODE, and COUNTRY: These attributes collectively store the address details

of the person.

3. Constraints:

o person_pk: Ensures PERSON_ID is a unique and non-null value.

o person_id_format_check: Validates the PERSON_ID format using a regular expression to maintain

data consistency.

Use Case:

The PERSON table can be extended through foreign key relationships in specialized entities like CUSTOMER,

EMPLOYEE, or ARTIST to avoid redundancy and maintain a clean data structure. This makes the table a versatile

base for managing individuals' information.

CREATE TABLE PERSON(

 PERSON_ID VARCHAR2(15) NOT NULL,

 FIRST_NAME VARCHAR2(20) NOT NULL,

 LAST_NAME VARCHAR2(20),

 EMAIL VARCHAR2(40),

 PHONE_NO VARCHAR2(20) NOT NULL,

 GENDER CHAR(1) NOT NULL,

 CITY VARCHAR2(85) NOT NULL,

 STATE VARCHAR2(2) NOT NULL,

 POSTAL_CODE VARCHAR2(10) NOT NULL,

 COUNTRY VARCHAR2(50) NOT NULL,

 CONSTRAINT person_pk PRIMARY KEY (PERSON_ID),

 CONSTRAINT person_id_format_check

 CHECK (REGEXP_LIKE(PERSON_ID, '^[0-9]{5}-[0-9]{7}-[0-9]$'))

);

Customer:

The CUSTOMER table is a subtype of the PERSON table and is used to store additional information specific to

customers.

Key Features:

1. Primary Key:

o CUSTOMER_ID uniquely identifies each customer and ensures no duplicates exist.

o CUSTOMER_ID also acts as a foreign key, referencing the PERSON table's PERSON_ID,

establishing an inheritance relationship.

2. Attributes:

o ACCOUNT_CREATION_DATE: Stores the date when the customer's account was created. This

helps track customer registration timelines.

3. Constraints:

o customer_pk: Ensures CUSTOMER_ID is unique and non-null.

o fk_customer_person: Establishes a foreign key relationship with the PERSON table, ensuring

that every CUSTOMER_ID exists in the PERSON table. This maintains data integrity and

avoids orphan records.

Use Case:

The CUSTOMER table adds a customer-specific layer on top of general person data, enabling efficient tracking

of customers without duplicating common attributes like name, contact details, and address.

CREATE TABLE CUSTOMER(

 CUSTOMER_ID VARCHAR2(15) NOT NULL,

 ACCOUNT_CREATION_DATE DATE,

 CONSTRAINT customer_pk PRIMARY KEY (CUSTOMER_ID),

 CONSTRAINT fk_customer_person FOREIGN KEY (CUSTOMER_ID)

 REFERENCES PERSON(PERSON_ID)

);

Employee:

The EMPLOYEE table is a subtype of the PERSON table and is designed to store information specific to

employees within the system.

Key Features:

1. Primary Key:

o EMPLOYEE_ID uniquely identifies each employee and ensures no duplicates exist.

o EMPLOYEE_ID also acts as a foreign key, referencing the PERSON table's PERSON_ID,

establishing an inheritance relationship between PERSON and EMPLOYEE.

2. Attributes:

o ROLE: Describes the employee's position or job role within the organization (e.g., Manager,

Support Staff).

o SALARY: Records the employee's salary in numeric format with up to two decimal places.

o STATUS: Specifies the current status of the employee, such as "Active" or "Inactive."

o JOINING_DATE: Captures the date the employee joined the organization.

3. Constraints:

o employee_pk: Ensures that EMPLOYEE_ID is unique and cannot be null.

o fk_employee_person: Establishes a foreign key relationship with the PERSON table, ensuring

all employees are registered as persons first, maintaining data consistency.

Use Case:

The EMPLOYEE table allows the system to manage employee-specific details like job roles, salaries, and

statuses while reusing general attributes (e.g., names, contact information) from the PERSON table, promoting

a normalized database design.

CREATE TABLE EMPLOYEE(

 EMPLOYEE_ID VARCHAR2(15) NOT NULL,

 ROLE VARCHAR2(50) NOT NULL,

 SALARY NUMBER(8,2) NOT NULL,

 STATUS VARCHAR2(20) NOT NULL,

 JOINING_DATE DATE NOT NULL,

 CONSTRAINT employee_pk PRIMARY KEY (EMPLOYEE_ID),

 CONSTRAINT fk_employee_person FOREIGN KEY (EMPLOYEE_ID)

 REFERENCES PERSON(PERSON_ID)

);

Artist:

The ARTIST table is designed to store specific information about artists within the Art Vault Management

System, linking each artist to their unique attributes and style.

Key Features:

1. Primary Key:
o ARTIST_ID (VARCHAR2): Uniquely identifies each artist in the system. This ensures that no

two artists have the same identifier and that each artist is distinguishable.

2. Attributes:
o STYLE (VARCHAR2): Describes the artistic style of the artist, such as Abstract, Renaissance,

or Modern. This attribute provides context about the artist's preferred artistic approach or genre.

3. Constraints:
o artist_pk: Ensures the uniqueness and non-nullability of the ARTIST_ID, maintaining the

integrity of the table.

o fk_artist_person: Establishes a foreign key relationship between ARTIST_ID and PERSON_ID

in the PERSON table. This ensures that every artist is also represented as a person in the system,

linking the artist’s data with their general personal information (e.g., name, contact details).

Use Case:

The ARTIST table is used to manage and store specific details about each artist within the system. By

associating an artist with a particular style, the system can organize and categorize artists according to their

artistic approaches. The foreign key relationship with the PERSON table ensures that general information about

the artist is stored centrally and avoids redundancy.

CREATE TABLE ARTIST(

 ARTIST_ID VARCHAR2(15) NOT NULL,

 STYLE VARCHAR2(100) NOT NULL,

 CONSTRAINT artist_pk PRIMARY KEY (ARTIST_ID),

 CONSTRAINT fk_artist_person FOREIGN KEY (ARTIST_ID)

 REFERENCES PERSON(PERSON_ID)

);

Order:

The ORDER_T table is designed to store information about customer orders within the Art Vault Management

System. It captures the details of each order placed by a customer, along with the relevant status and payment

information.

Key Features:

1. Primary Key:
o ORDER_ID (VARCHAR2): Uniquely identifies each order in the system. This ensures that

each order can be distinctly referenced and no duplicates exist.

2. Attributes:
o CUSTOMER_ID (VARCHAR2): Refers to the customer who placed the order. This is a foreign

key that links to the CUSTOMER table, ensuring each order is associated with a valid customer.

o RECIPIENT (VARCHAR2): Specifies the recipient's name for the order, which may differ

from the customer’s name if the order is a gift or being delivered to someone else.

o ORDER_DATE (DATE): Records the date when the order was placed. This helps track the

timing and manage order history.

o ORDER_STATUS (VARCHAR2): Describes the current status of the order, such as "Pending,"

"Shipped," "Delivered," or "Cancelled." This helps in managing the order lifecycle.

o PAYMENT_METHOD (VARCHAR2): Indicates the method of payment used for the order

(e.g., Credit Card, PayPal, Bank Transfer). This helps track how the transaction was processed.

3. Constraints:
o order_pk: Ensures the uniqueness and non-nullability of the ORDER_ID, maintaining the

integrity of the table and making each order identifiable.

o fk_order_customer: Establishes a foreign key relationship with the CUSTOMER table,

ensuring that every order is associated with a valid customer.

Use Case:

The ORDER_T table is used to manage customer orders, ensuring that each order is linked to a customer and

contains relevant details such as recipient information, order status, and payment method. The foreign key

relationship with the CUSTOMER table ensures data integrity by enforcing that each order is associated with an

existing customer in the system. This structure helps in tracking and managing orders efficiently throughout the

order lifecycle.

CREATE TABLE ORDER_T(

 ORDER_ID VARCHAR2(15) NOT NULL,

 CUSTOMER_ID VARCHAR2(15) NOT NULL,

 RECIEPIENT VARCHAR2(50) NOT NULL,

 ORDER_DATE DATE NOT NULL,

 ORDER_STATUS VARCHAR2(20) NOT NULL,

 PAYMENT_METHOD VARCHAR2(20) NOT NULL,

 CONSTRAINT order_pk PRIMARY KEY (ORDER_ID),

 CONSTRAINT fk_order_customer FOREIGN KEY (CUSTOMER_ID)

 REFERENCES CUSTOMER(CUSTOMER_ID)

);

Artwork:

The ARTWORK table is designed to store detailed information about each artwork available in the Art Vault

Management System. It captures essential attributes of the artwork, including its identity, category, status, and

associated artist.

Key Features:

1. Primary Key:
o ARTWORK_ID (VARCHAR2): Uniquely identifies each artwork in the system. It ensures that

each artwork can be referenced without ambiguity.

2. Attributes:
o TITLE (VARCHAR2): Specifies the title of the artwork, providing a descriptive name for the

piece.

o CATEGORY (VARCHAR2): Defines the category or type of the artwork (e.g., Painting,

Sculpture, Photography), helping to organize and classify the collection.

o ARTIST_ID (VARCHAR2): Refers to the artist who created the artwork. This is a foreign key

that links to the ARTIST table, ensuring that each artwork is associated with a valid artist.

o STOCKED_DATE (DATE): Captures the date when the artwork was added to the collection.

This helps track the timeline of the artwork’s inclusion in the gallery.

o STATUS (VARCHAR2): Describes the current status of the artwork, such as "Available,"

"Sold," "Reserved," or "Exhibited." This assists in managing inventory and artwork lifecycle.

3. Constraints:

o artwork_pk: Ensures the uniqueness and non-nullability of the ARTWORK_ID, making it a

reliable identifier for each piece of artwork.

o fk_artwork_artist: Establishes a foreign key relationship with the ARTIST table, ensuring that

every artwork is associated with an existing artist, promoting data consistency.

Use Case:

The ARTWORK table helps in managing details about artworks in the collection, linking them to artists and

maintaining key information such as titles, categories, status, and the date they were added. The foreign key

relationship with the ARTIST table ensures each artwork has a valid artist, and the table's attributes enable

efficient tracking, categorization, and status management of the artworks in the system.

CREATE TABLE ARTWORK (

 ARTWORK_ID VARCHAR2(15) NOT NULL,

 TITLE VARCHAR2(100) NOT NULL,

 CATEGORY VARCHAR2(50) NOT NULL,

 ARTIST_ID VARCHAR2(15) NOT NULL,

 STOCKED_DATE DATE NOT NULL,

 STATUS VARCHAR2(20) NOT NULL,

 CONSTRAINT artwork_pk PRIMARY KEY (ARTWORK_ID),

 CONSTRAINT fk_artwork_artist FOREIGN KEY (ARTIST_ID) REFERENCES ARTIST (ARTIST_ID)

);

OrderLine:

The ORDERLINE table is designed to capture the relationship between orders and the specific artworks

included in those orders. It supports the many-to-many relationship between orders and artworks, allowing

multiple artworks to be part of a single order, and an artwork to appear in multiple orders.

Key Features:

1. Primary Key:
o ORDER_ID (VARCHAR2): Part of the composite primary key that links the order line to a

specific order in the ORDER_T table.

o ARTWORK_ID (VARCHAR2): Part of the composite primary key that links the order line to a

specific artwork in the ARTWORK table.

o The combination of ORDER_ID and ARTWORK_ID uniquely identifies each entry in the

ORDERLINE table, ensuring no duplicate records for the same artwork within an order.

2. Foreign Keys:

o fk_orderline_artwork: Establishes a foreign key relationship with the ARTWORK table,

ensuring that every artwork in the order line corresponds to an existing artwork in the system.

o fk_orderline_order: Establishes a foreign key relationship with the ORDER_T table, ensuring

that every order line is linked to a valid order in the system.

3. Constraints:
o orderline_pk: Ensures that the combination of ORDER_ID and ARTWORK_ID is unique

within the table, preventing duplicate entries of the same artwork in an order.

Use Case:

The ORDERLINE table enables the tracking of which artworks are included in each order. By linking the

ORDER_T and ARTWORK tables through foreign keys, this table supports the many-to-many relationship

between orders and artworks. It ensures data integrity by enforcing that each artwork in an order is valid, and

each order line is associated with a legitimate order. This structure allows efficient management and tracking of

ordered artworks.

CREATE TABLE ORDERLINE (

 ORDER_ID VARCHAR2(15) NOT NULL,

 ARTWORK_ID VARCHAR2(15) NOT NULL,

 CONSTRAINT fk_orderline_artwork FOREIGN KEY (ARTWORK_ID) REFERENCES

ARTWORK(ARTWORK_ID),

 CONSTRAINT fk_orderline_order FOREIGN KEY (ORDER_ID) REFERENCES ORDER_T(ORDER_ID),

 CONSTRAINT orderline_pk PRIMARY KEY (ORDER_ID, ARTWORK_ID)

);

Artwork_Price:

The Artwork_Price table is designed to track the price history of artworks, capturing changes in the price over

time. It allows for the management of dynamic pricing, with each price change associated with an effective date

to maintain historical pricing information.

Key Features:

1. Primary Key:
o ARTWORK_ID (VARCHAR2): Identifies the artwork whose price is being recorded.

Combined with the EFFECTIVE_DATE, this forms a composite primary key.

o EFFECTIVE_DATE (DATE): Marks the date when the price became effective. The

combination of ARTWORK_ID and EFFECTIVE_DATE uniquely identifies each price record

for an artwork, ensuring that multiple price entries for the same artwork can exist with different

effective dates.

2. Foreign Key:
o fk_artwork: Establishes a foreign key relationship with the ARTWORK table, ensuring that

each price record is associated with a valid artwork.

3. Constraints:
o artwork_price_pk: Ensures the uniqueness of price records by enforcing the composite primary

key, where the same artwork can have multiple price records, but each record must have a

distinct effective date.

Use Case:

The Artwork_Price table allows the system to track price changes for artworks over time. Each price is

associated with a specific effective date, making it possible to maintain a historical record of artwork prices.

This structure supports features like price updates, querying historical prices, and managing price changes for

artworks based on time-specific conditions.

CREATE TABLE Artwork_Price (

 ARTWORK_ID VARCHAR2(15) NOT NULL,

 PRICE DECIMAL(10, 2) NOT NULL,

 EFFECTIVE_DATE DATE NOT NULL,

 CONSTRAINT fk_artwork FOREIGN KEY (ARTWORK_ID) REFERENCES Artwork(ARTWORK_ID),

 CONSTRAINT artwork_price_pk PRIMARY KEY (ARTWORK_ID, EFFECTIVE_DATE)

);

Event:

The EVENT table is designed to store details about various events hosted in the system. It serves as a central

record for each event, capturing information such as the event's name, start and end dates, and location.

Key Features:

1. Primary Key:

o EVENT_NAME and START_DATE together form the composite primary key, ensuring the

uniqueness of each event by both name and start date.

2. Attributes:

o EVENT_NAME: A string that uniquely identifies the name of the event (e.g., "Spring Art

Expo").

o START_DATE: The date the event begins.

o END_DATE: The date the event concludes.

o EVENT_LOCATION: The location where the event is hosted (e.g., "New York Gallery").

3. Constraints:

o event_pk: Ensures that the combination of EVENT_NAME and START_DATE is unique,

preventing duplicate events with the same name and start date.

Use Case:

The EVENT table is used to store and manage details about different events, such as art exhibits, fairs, and

shows, with specific start and end dates and locations.

CREATE TABLE EVENT (

 EVENT_NAME VARCHAR2(50) NOT NULL,

 START_DATE DATE NOT NULL,

 END_DATE DATE NOT NULL,

 EVENT_LOCATION VARCHAR2(100) NOT NULL,

 CONSTRAINT event_pk PRIMARY KEY (EVENT_NAME, START_DATE)

);

Ticket:

The TICKET table is designed to store ticket-related information for the events in the system. Each ticket is

uniquely identified by its TICKET_ID and contains details about the event, ticket price, and the effective date

when the ticket price is applicable.

Key Features:

1. Primary Key:

o TICKET_ID uniquely identifies each ticket and ensures there are no duplicate tickets in the

system.

2. Attributes:

o TICKET_ID: A unique identifier for the ticket (e.g., "TICKET-001").

o EVENT_NAME: The name of the event for which the ticket is issued (links to the EVENT

table).

o START_DATE: The start date of the event for which the ticket is issued (links to the EVENT

table).

o TICKET_PRICE: The price of the ticket (e.g., 50.00).

o EFFECTIVE_DATE: The date when the ticket price becomes effective.

3. Constraints:

o ticket_pk: Ensures that the TICKET_ID is unique.

o fk_ticket_event: Establishes a foreign key relationship with the EVENT table. The combination

of EVENT_NAME and START_DATE in the TICKET table must correspond to an existing

event in the EVENT table, ensuring referential integrity between the two tables.

Use Case: The TICKET table allows the system to track and manage ticket prices for events, including

handling price changes over time and associating each ticket with a specific event and its details.

CREATE TABLE TICKET (

 TICKET_ID VARCHAR2(15) NOT NULL,

 EVENT_NAME VARCHAR2(50) NOT NULL,

 START_DATE DATE NOT NULL,

 TICKET_PRICE NUMBER(5) NOT NULL,

 EFFECTIVE_DATE DATE NOT NULL,

 CONSTRAINT ticket_pk PRIMARY KEY (TICKET_ID),

 CONSTRAINT fk_ticket_event FOREIGN KEY (EVENT_NAME, START_DATE)

 REFERENCES EVENT (EVENT_NAME, START_DATE) -- Composite foreign key on EVENT_NAME

and START_DATE

);

Event_Employee:

The EVENT_EMPLOYEE table represents the many-to-many relationship between events and employees. It

stores details about the employees assigned to specific events, including their roles and working hours.

Key Features:

1. Primary Key:

o EVENT_NAME, EMPLOYEE_ID, and START_DATE together form a composite primary key,

ensuring uniqueness for each combination of event, employee, and date.

2. Attributes:

o EVENT_NAME: The name of the event to which the employee is assigned (links to the EVENT

table).

o START_DATE: The start date of the event (links to the EVENT table).

o EMPLOYEE_ID: The unique identifier for the employee (links to the EMPLOYEE table).

o WORK_HOURS: The number of hours the employee works at the event.

o EVENT_ROLE: The role or position the employee holds during the event (e.g., "Manager,"

"Coordinator").

3. Constraints:

o event_employee_pk: Ensures that the combination of EVENT_NAME, EMPLOYEE_ID, and

START_DATE is unique, preventing duplicate assignments.

o fk_ticket_event1: Establishes a foreign key relationship with the EVENT table, ensuring that

each event assignment corresponds to an existing event.

o fk_ticket_event2: Establishes a foreign key relationship with the EMPLOYEE table, ensuring

that the employee assigned to the event exists in the system.

Use Case: The EVENT_EMPLOYEE table is used to manage and track employees working at various events,

including their roles and the hours they contribute. It ensures that each employee is linked to specific events and

maintains data integrity between the EVENT and EMPLOYEE tables.

CREATE TABLE EVENT_EMPLOYEE (

 EVENT_NAME VARCHAR2(50) NOT NULL,

 START_DATE DATE NOT NULL,

 EMPLOYEE_ID VARCHAR2(15) NOT NULL,

 WORK_HOURS NUMBER(2) NOT NULL,

 EVENT_ROLE VARCHAR2(50) NOT NULL,

 CONSTRAINT event_employee_pk PRIMARY KEY (EVENT_NAME, EMPLOYEE_ID, START_DATE),

 CONSTRAINT fk_ticket_event1 FOREIGN KEY (EVENT_NAME, START_DATE) REFERENCES

EVENT(EVENT_NAME, START_DATE),

 CONSTRAINT fk_ticket_event2 FOREIGN KEY (EMPLOYEE_ID) REFERENCES

EMPLOYEE(EMPLOYEE_ID)

);

Event_Artwork:

The EVENT_ARTWORK table represents the many-to-many relationship between events and artworks. It

stores details about the artworks featured in specific events.

Key Features:

1. Primary Key:

o EVENT_NAME, ARTWORK_ID, and START_DATE together form a composite primary key,

ensuring uniqueness for each combination of event, artwork, and date.

2. Attributes:

o EVENT_NAME: The name of the event where the artwork is featured (links to the EVENT

table).

o START_DATE: The start date of the event (links to the EVENT table).

o ARTWORK_ID: The unique identifier of the artwork featured in the event (links to the

ARTWORK table).

3. Constraints:

o event_artwork_pk: Ensures that the combination of EVENT_NAME, ARTWORK_ID, and

START_DATE is unique, preventing duplicate artwork assignments to events.

o fk_event_artwork1: Establishes a foreign key relationship with the EVENT table, ensuring that

each artwork assignment corresponds to an existing event.

o fk_event_artwork2: Establishes a foreign key relationship with the ARTWORK table, ensuring

that the artwork assigned to the event exists in the system.

Use Case: The EVENT_ARTWORK table is used to manage and track which artworks are featured in which

events. It maintains a relationship between the EVENT and ARTWORK tables, ensuring that artwork details

are properly associated with specific events.

CREATE TABLE EVENT_ARTWORK (

 EVENT_NAME VARCHAR2(50) NOT NULL,

 START_DATE DATE NOT NULL,

 ARTWORK_ID VARCHAR2(15) NOT NULL,

 CONSTRAINT event_artwork_pk PRIMARY KEY (EVENT_NAME, ARTWORK_ID, START_DATE),

 CONSTRAINT fk_event_artwork1 FOREIGN KEY (EVENT_NAME, START_DATE) REFERENCES

Event(EVENT_NAME, START_DATE),

 CONSTRAINT fk_event_artwork2 FOREIGN KEY (ARTWORK_ID) REFERENCES

ARTWORK(ARTWORK_ID)

);

Insertion:

Person:

INSERT INTO PERSON (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NO, GENDER,

CITY, STATE, POSTAL_CODE, COUNTRY)

VALUES ('12345-1234567-1', 'John', 'Doe', 'johndoe@gmail.com', '1234567890', 'M', 'New York', 'NY',

'10001', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-2', 'Jane', 'Smith', 'janesmith@yahoo.com', '1234567891',

'F', 'Los Angeles', 'CA', '90001', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-3', 'Mark', 'Brown', 'markbrown@mail.com',

'1234567892', 'M', 'Chicago', 'IL', '60601', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-4', 'Sara', 'Johnson', 'sarajohnson@outlook.com',

'1234567893', 'F', 'Houston', 'TX', '77001', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-5', 'Mike', 'Wilson', 'mikewilson@company.com',

'1234567894', 'M', 'San Francisco', 'CA', '94016', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-6', 'Emma', 'Taylor', 'emmataylor@mail.com',

'1234567895', 'F', 'Seattle', 'WA', '98101', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-7', 'Chris', 'White', 'chriswhite@corp.com', '1234567896',

'M', 'Miami', 'FL', '33101', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-8', 'Olivia', 'Clark', 'oliviaclark@mail.com', '1234567897',

'F', 'Denver', 'CO', '80201', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-9', 'James', 'Lewis', 'jameslewis@mail.com',

'1234567898', 'M', 'Phoenix', 'AZ', '85001', 'USA');

INSERT INTO PERSON VALUES ('12345-1234567-0', 'Ava', 'Walker', 'avawalker@mail.com', '1234567899',

'F', 'Dallas', 'TX', '75201', 'USA');

Customer:

INSERT INTO CUSTOMER (CUSTOMER_ID, ACCOUNT_CREATION_DATE)

VALUES ('12345-1234567-1', TO_DATE('2024-01-01', 'YYYY-MM-DD'));

INSERT INTO CUSTOMER VALUES ('12345-1234567-3', TO_DATE('2024-01-02', 'YYYY-MM-DD'));

INSERT INTO CUSTOMER VALUES ('12345-1234567-5', TO_DATE('2024-01-03', 'YYYY-MM-DD'));

INSERT INTO CUSTOMER VALUES ('12345-1234567-7', TO_DATE('2024-01-04', 'YYYY-MM-DD'));

INSERT INTO CUSTOMER VALUES ('12345-1234567-9', TO_DATE('2024-01-05', 'YYYY-MM-DD'));

Employee:

INSERT INTO EVENT (EVENT_NAME, EVENT_LOCATION, START_DATE, END_DATE)

VALUES ('Spring Art Expo', 'New York Gallery', TO_DATE('2024-03-01', 'YYYY-MM-DD'),

TO_DATE('2024-03-05', 'YYYY-MM-DD'));

INSERT INTO EVENT (EVENT_NAME, EVENT_LOCATION, START_DATE, END_DATE)

VALUES ('Summer Sculpture Show', 'Chicago Art Center', TO_DATE('2024-06-10', 'YYYY-MM-DD'),

TO_DATE('2024-06-15', 'YYYY-MM-DD'));

INSERT INTO EVENT (EVENT_NAME, EVENT_LOCATION, START_DATE, END_DATE)

VALUES ('Modern Art Fair', 'Los Angeles Museum', TO_DATE('2024-04-15', 'YYYY-MM-DD'),

TO_DATE('2024-04-20', 'YYYY-MM-DD'));

INSERT INTO EVENT (EVENT_NAME, EVENT_LOCATION, START_DATE, END_DATE)

VALUES ('Abstract Showcase', 'Houston Art Space', TO_DATE('2024-05-01', 'YYYY-MM-DD'),

TO_DATE('2024-05-05', 'YYYY-MM-DD'));

INSERT INTO EVENT (EVENT_NAME, EVENT_LOCATION, START_DATE, END_DATE)

VALUES ('Classic Art Week', 'San Francisco Hall', TO_DATE('2024-07-01', 'YYYY-MM-DD'),

TO_DATE('2024-07-07', 'YYYY-MM-DD'));

Artist:

INSERT INTO ARTIST (ARTIST_ID, STYLE)

VALUES ('12345-1234567-2', 'Modern Art');

INSERT INTO ARTIST VALUES ('12345-1234567-4', 'Impressionism');

INSERT INTO ARTIST VALUES ('12345-1234567-6', 'Abstract');

INSERT INTO ARTIST VALUES ('12345-1234567-8', 'Renaissance');

INSERT INTO ARTIST VALUES ('12345-1234567-0', 'Cubism');

Artwork:

INSERT INTO ARTWORK (ARTWORK_ID, TITLE, CATEGORY, ARTIST_ID, STOCKED_DATE,

STATUS)

VALUES ('AW1', 'Starry Night', 'Painting', '12345-1234567-2', TO_DATE('2024-02-01', 'YYYY-MM-DD'),

'Available');

INSERT INTO ARTWORK VALUES ('AW2', 'Mona Lisa', 'Portrait', '12345-1234567-4', TO_DATE('2024-02-

02', 'YYYY-MM-DD'), 'Sold');

INSERT INTO ARTWORK VALUES ('AW3', 'The Scream', 'Painting', '12345-1234567-6', TO_DATE('2024-

02-03', 'YYYY-MM-DD'), 'Available');

INSERT INTO ARTWORK VALUES ('AW4', 'The Kiss', 'Sculpture', '12345-1234567-8', TO_DATE('2024-

02-04', 'YYYY-MM-DD'), 'Reserved');

INSERT INTO ARTWORK VALUES ('AW5', 'Girl with Pearl', 'Painting', '12345-1234567-0',

TO_DATE('2024-02-05', 'YYYY-MM-DD'), 'Available');

Order:

INSERT INTO ORDER_T (ORDER_ID, CUSTOMER_ID, RECIEPIENT, ORDER_DATE,

ORDER_STATUS, PAYMENT_METHOD)

VALUES ('O1', '12345-1234567-1', 'John Doe', TO_DATE('2024-03-01', 'YYYY-MM-DD'), 'Shipped', 'Credit

Card');

INSERT INTO ORDER_T VALUES ('O2', '12345-1234567-3', 'Mark Brown', TO_DATE('2024-03-02',

'YYYY-MM-DD'), 'Processing', 'PayPal');

INSERT INTO ORDER_T VALUES ('O3', '12345-1234567-5', 'Mike Wilson', TO_DATE('2024-03-03',

'YYYY-MM-DD'), 'Delivered', 'Cash');

Order Line:

INSERT INTO ORDERLINE (ORDER_ID, ARTWORK_ID)

VALUES ('O1', 'AW1');

INSERT INTO ORDERLINE VALUES ('O1', 'AW2');

INSERT INTO ORDERLINE VALUES ('O1', 'AW3');

INSERT INTO ORDERLINE VALUES ('O2', 'AW4');

INSERT INTO ORDERLINE VALUES ('O2', 'AW5');

INSERT INTO ORDERLINE VALUES ('O3', 'AW1');

INSERT INTO ORDERLINE VALUES ('O3', 'AW2');

INSERT INTO ORDERLINE VALUES ('O3', 'AW3');

INSERT INTO ORDERLINE VALUES ('O3', 'AW4');

INSERT INTO ORDERLINE VALUES ('O3', 'AW5');

Artwork Price:

INSERT INTO ARTWORK_PRICE (ARTWORK_ID, PRICE, EFFECTIVE_DATE)

VALUES ('AW1', 1000.00, TO_DATE('2024-01-01', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW2', 1500.00, TO_DATE('2024-01-01', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW3', 2000.00, TO_DATE('2024-01-02', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW4', 3000.00, TO_DATE('2024-01-02', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW5', 2500.00, TO_DATE('2024-01-03', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW1', 1100.00, TO_DATE('2024-02-01', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW2', 1550.00, TO_DATE('2024-02-01', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW3', 2100.00, TO_DATE('2024-02-02', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW4', 3050.00, TO_DATE('2024-02-02', 'YYYY-MM-DD'));

INSERT INTO ARTWORK_PRICE VALUES ('AW5', 2600.00, TO_DATE('2024-02-03', 'YYYY-MM-DD'));

Event:

INSERT INTO EVENT (EVENT_NAME, START_DATE, END_DATE, EVENT_LOCATION,

EMPLOYEE_ID)

VALUES ('Spring Art Expo', TO_DATE('2024-03-01', 'YYYY-MM-DD'), TO_DATE('2024-03-05', 'YYYY-

MM-DD'), 'New York Gallery', '12345-1234567-2');

INSERT INTO EVENT VALUES ('Summer Sculpture Show', TO_DATE('2024-06-10', 'YYYY-MM-DD'),

TO_DATE('2024-06-15', 'YYYY-MM-DD'), 'Chicago Art Center', '12345-1234567-4');

INSERT INTO EVENT VALUES ('Modern Art Fair', TO_DATE('2024-04-15', 'YYYY-MM-DD'),

TO_DATE('2024-04-20', 'YYYY-MM-DD'), 'Los Angeles Museum', '12345-1234567-6');

INSERT INTO EVENT VALUES ('Abstract Showcase', TO_DATE('2024-05-01', 'YYYY-MM-DD'),

TO_DATE('2024-05-05', 'YYYY-MM-DD'), 'Houston Art Space', '12345-1234567-8');

INSERT INTO EVENT VALUES ('Classic Art Week', TO_DATE('2024-07-01', 'YYYY-MM-DD'),

TO_DATE('2024-07-07', 'YYYY-MM-DD'), 'San Francisco Hall', '12345-1234567-0');

Ticket:

INSERT INTO TICKET (TICKET_ID, EVENT_NAME, START_DATE, TICKET_PRICE,

EFFECTIVE_DATE)

VALUES ('TICKET-001', 'Spring Art Expo', TO_DATE('2024-03-01', 'YYYY-MM-DD'), 50.00,

TO_DATE('2024-03-01', 'YYYY-MM-DD'));

INSERT INTO TICKET (TICKET_ID, EVENT_NAME, START_DATE, TICKET_PRICE,

EFFECTIVE_DATE)

VALUES ('TICKET-002', 'Summer Sculpture Show', TO_DATE('2024-06-10', 'YYYY-MM-DD'), 60.00,

TO_DATE('2024-06-10', 'YYYY-MM-DD'));

INSERT INTO TICKET (TICKET_ID, EVENT_NAME, START_DATE, TICKET_PRICE,

EFFECTIVE_DATE)

VALUES ('TICKET-003', 'Modern Art Fair', TO_DATE('2024-04-15', 'YYYY-MM-DD'), 55.00,

TO_DATE('2024-04-15', 'YYYY-MM-DD'));

INSERT INTO TICKET (TICKET_ID, EVENT_NAME, START_DATE, TICKET_PRICE,

EFFECTIVE_DATE)

VALUES ('TICKET-004', 'Abstract Showcase', TO_DATE('2024-05-01', 'YYYY-MM-DD'), 40.00,

TO_DATE('2024-05-01', 'YYYY-MM-DD'));

INSERT INTO TICKET (TICKET_ID, EVENT_NAME, START_DATE, TICKET_PRICE,

EFFECTIVE_DATE)

VALUES ('TICKET-005', 'Classic Art Week', TO_DATE('2024-07-01', 'YYYY-MM-DD'), 70.00,

TO_DATE('2024-07-01', 'YYYY-MM-DD'));

Event_Employee:

INSERT INTO EVENT_EMPLOYEE (EVENT_NAME, START_DATE, EMPLOYEE_ID, WORK_HOURS,

EVENT_ROLE)

VALUES ('Spring Art Expo', TO_DATE('2024-03-01', 'YYYY-MM-DD'), '12345-1234567-2', 8, 'Manager');

INSERT INTO EVENT_EMPLOYEE VALUES ('Summer Sculpture Show', TO_DATE('2024-06-10', 'YYYY-

MM-DD'), '12345-1234567-4', 7, 'Coordinator');

INSERT INTO EVENT_EMPLOYEE VALUES ('Modern Art Fair', TO_DATE('2024-04-15', 'YYYY-MM-

DD'), '12345-1234567-6', 6, 'Assistant');

INSERT INTO EVENT_EMPLOYEE VALUES ('Abstract Showcase', TO_DATE('2024-05-01', 'YYYY-MM-

DD'), '12345-1234567-8', 5, 'Technician');

INSERT INTO EVENT_EMPLOYEE VALUES ('Classic Art Week', TO_DATE('2024-07-01', 'YYYY-MM-

DD'), '12345-1234567-0', 9, 'Supervisor');

Event_Artwork:

INSERT INTO EVENT_ARTWORK (EVENT_NAME, START_DATE, ARTWORK_ID)

VALUES ('Spring Art Expo', TO_DATE('2024-03-01', 'YYYY-MM-DD'), 'AW1');

INSERT INTO EVENT_ARTWORK VALUES ('Spring Art Expo', TO_DATE('2024-03-01', 'YYYY-MM-

DD'), 'AW2');

INSERT INTO EVENT_ARTWORK VALUES ('Summer Sculpture Show', TO_DATE('2024-06-10', 'YYYY-

MM-DD'), 'AW3');

INSERT INTO EVENT_ARTWORK VALUES ('Modern Art Fair', TO_DATE('2024-04-15', 'YYYY-MM-

DD'), 'AW4');

INSERT INTO EVENT_ARTWORK VALUES ('Abstract Showcase', TO_DATE('2024-05-01', 'YYYY-MM-

DD'), 'AW5');

INSERT INTO EVENT_ARTWORK VALUES ('Classic Art Week', TO_DATE('2024-07-01', 'YYYY-MM-

DD'), 'AW1');

INSERT INTO EVENT_ARTWORK VALUES ('Classic Art Week', TO_DATE('2024-07-01', 'YYYY-MM-

DD'), 'AW3');

SQL Queries:

Retrieve all orders with customer details

SELECT O.ORDER_ID, P.FIRST_NAME, P.LAST_NAME, C.ACCOUNT_CREATION_DATE,

O.ORDER_DATE, O.ORDER_STATUS

FROM ORDER_T O

JOIN CUSTOMER C ON O.CUSTOMER_ID = C.CUSTOMER_ID

JOIN PERSON P ON C.CUSTOMER_ID = P.PERSON_ID;

List all artwork titles, artists' names, and prices

SELECT AW.TITLE, P.FIRST_NAME || ' ' || P.LAST_NAME AS ARTIST_NAME, AP.PRICE,

AP.EFFECTIVE_DATE

FROM ARTWORK AW

JOIN ARTIST A ON AW.ARTIST_ID = A.ARTIST_ID

JOIN PERSON P ON A.ARTIST_ID = P.PERSON_ID

JOIN ARTWORK_PRICE AP ON AW.ARTWORK_ID = AP.ARTWORK_ID;

Get events and the total number of artworks associated with each event

SELECT E.EVENT_NAME, COUNT(EA.ARTWORK_ID) AS TOTAL_ARTWORKS

FROM EVENT E

LEFT JOIN EVENT_ARTWORK EA ON E.EVENT_NAME = EA.EVENT_NAME AND E.START_DATE

= EA.START_DATE

GROUP BY E.EVENT_NAME;

Retrieve the names of employees and their roles working in events

SELECT P.FIRST_NAME || ' ' || P.LAST_NAME AS EMPLOYEE_NAME, EE.EVENT_ROLE,

EE.WORK_HOURS, E.EVENT_NAME

FROM EVENT_EMPLOYEE EE

JOIN EMPLOYEE EMP ON EE.EMPLOYEE_ID = EMP.EMPLOYEE_ID

JOIN PERSON P ON EMP.EMPLOYEE_ID = P.PERSON_ID

JOIN EVENT E ON EE.EVENT_NAME = E.EVENT_NAME AND EE.START_DATE = E.START_DATE;

Find the total sales amount for each order

SELECT O.ORDER_ID, SUM(AP.PRICE) AS TOTAL_SALES

FROM ORDER_T O

JOIN ORDERLINE OL ON O.ORDER_ID = OL.ORDER_ID

JOIN ARTWORK_PRICE AP ON OL.ARTWORK_ID = AP.ARTWORK_ID

WHERE AP.EFFECTIVE_DATE <= O.ORDER_DATE

GROUP BY O.ORDER_ID

ORDER BY O.ORDER_ID;

List events along with their total ticket revenue

SELECT T.EVENT_NAME, SUM(T.TICKET_PRICE) AS TOTAL_REVENUE

FROM TICKET T

GROUP BY T.EVENT_NAME;

Get customer orders with recipient and payment method details

SELECT P.FIRST_NAME || ' ' || P.LAST_NAME AS CUSTOMER_NAME, O.ORDER_ID, O.RECIEPIENT,

O.PAYMENT_METHOD, O.ORDER_DATE

FROM ORDER_T O

JOIN CUSTOMER C ON O.CUSTOMER_ID = C.CUSTOMER_ID

JOIN PERSON P ON C.CUSTOMER_ID = P.PERSON_ID;

Retrieve the most recent price for each artwork

SELECT ARTWORK_ID, PRICE, EFFECTIVE_DATE

FROM ARTWORK_PRICE AP1

WHERE EFFECTIVE_DATE = (

 SELECT MAX(EFFECTIVE_DATE)

 FROM ARTWORK_PRICE AP2

 WHERE AP1.ARTWORK_ID = AP2.ARTWORK_ID

);

Triggers:

Insert and Update trigger o Artwork_Price:

Purpose: This trigger is invoked before any insert or update operation on the ARTWORK_PRICE table.

Logic: It checks if the PRICE being inserted or updated is less than or equal to 0. If so, it raises an error with the

message "Price must be positive," preventing the operation from proceeding

CREATE OR REPLACE TRIGGER trg_before_price_insert_update

BEFORE INSERT OR UPDATE ON ARTWORK_PRICE

FOR EACH ROW

BEGIN

 IF :NEW.PRICE <= 0 THEN

 RAISE_APPLICATION_ERROR(-20001, 'Price must be positive.');

 END IF;

END;

/

IMPLEMENTATION OF TRIGGER:

UPDATE ARTWORK_PRICE

SET PRICE = PRICE * -1.10

WHERE PRICE > 1000;

Update Artwork Status After an Order

Purpose: This trigger is invoked after an insert operation on the ORDERLINE table.

Logic: When a new order line is added (indicating an artwork has been ordered), it updates the STATUS of the

corresponding artwork in the ARTWORK table to "Sold."

CREATE OR REPLACE TRIGGER trg_update_artwork_status

AFTER INSERT ON ORDERLINE

FOR EACH ROW

BEGIN

 UPDATE ARTWORK

 SET STATUS = 'Sold'

 WHERE ARTWORK_ID = :NEW.ARTWORK_ID;

END;

/

Trigger to Ensure Artwork Stock is Updated:

 Purpose: When an artwork is ordered, its stock quantity should be updated.

 Logic: After inserting an order line, the trigger will decrease the stock of the corresponding artwork.

CREATE OR REPLACE TRIGGER trg_update_artwork_stock

AFTER INSERT ON ORDERLINE

FOR EACH ROW

BEGIN

 UPDATE ARTWORK

 SET STOCKED_QUANTITY = STOCKED_QUANTITY - 1

 WHERE ARTWORK_ID = :NEW.ARTWORK_ID;

END;

/

Trigger for Preventing Negative Stock:

 Purpose: Ensures that stock levels cannot go below zero.

 Logic: Before updating or inserting a new order line, the trigger checks if there is enough stock for the

artwork.

CREATE OR REPLACE TRIGGER trg_check_stock_before_order

BEFORE INSERT ON ORDERLINE

FOR EACH ROW

BEGIN

 DECLARE

 stock_count NUMBER;

 BEGIN

 SELECT STOCKED_QUANTITY INTO stock_count

 FROM ARTWORK

 WHERE ARTWORK_ID = :NEW.ARTWORK_ID;

 IF stock_count <= 0 THEN

 RAISE_APPLICATION_ERROR(-20002, 'Not enough stock available.');

 END IF;

 END;

END;

/

Trigger for Order Status Change:

 Purpose: Update the order status to "Completed" when the payment is processed.

 Logic: After the payment method is updated or an order is marked as paid, the trigger changes the order

status to "Completed."

CREATE OR REPLACE TRIGGER trg_update_order_status

AFTER UPDATE OF PAYMENT_METHOD ON ORDER_T

FOR EACH ROW

BEGIN

 IF :NEW.PAYMENT_METHOD IS NOT NULL THEN

 UPDATE ORDER_T

 SET ORDER_STATUS = 'Completed'

 WHERE ORDER_ID = :NEW.ORDER_ID;

 END IF;

END;

/

Trigger for Preventing Price Updates on Sold Artwork:

 Purpose: Prevents price updates on artwork that has already been marked as "Sold."

 Logic: Before updating the ARTWORK_PRICE, the trigger checks if the artwork's status is "Sold" and raises an

error if so.

sql

Copy code

CREATE OR REPLACE TRIGGER trg_prevent_price_update_sold_artwork

BEFORE UPDATE ON ARTWORK_PRICE

FOR EACH ROW

BEGIN

 DECLARE

 artwork_status VARCHAR2(20);

 BEGIN

 SELECT STATUS INTO artwork_status

 FROM ARTWORK

 WHERE ARTWORK_ID = :NEW.ARTWORK_ID;

 IF artwork_status = 'Sold' THEN

 RAISE_APPLICATION_ERROR(-20003, 'Cannot update price of sold artwork.');

 END IF;

 END;

END;

/

Roles:

ADMIN:

Description: The ADMIN role has full system access, allowing for complete control over the database schema.

It can manage all tables, perform CRUD operations, and create or modify database objects like tables, views,

procedures, and triggers. This role is essential for maintaining system integrity and security.

CREATE ROLE ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.ARTWORK TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.CUSTOMER TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.ORDER_T TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.ORDERLINE TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.ARTWORK_PRICE TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.EVENT TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.TICKET TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.EVENT_EMPLOYEE TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.EVENT_ARTWORK TO ADMIN;

GRANT SELECT, INSERT, UPDATE, DELETE ON YOUR_SCHEMA.EMPLOYEE TO ADMIN;

GRANT CREATE TABLE TO ADMIN;

GRANT CREATE VIEW TO ADMIN;

GRANT CREATE PROCEDURE TO ADMIN;

GRANT CREATE TRIGGER TO ADMIN;

CREATE USER EMAN IDENTIFIED BY EMAN;

GRANT ADMIN TO EMAN;

SALE MANAGER:

Description: The SALES_MANAGER role is responsible for managing orders, updating customer details, and

viewing artwork pricing. This role allows users to create, update, and view orders and artwork prices. It also

allows updating customer information but restricts access to deleting or creating customer records.

CREATE ROLE SALES_MANAGER;

GRANT SELECT, INSERT, UPDATE ON ORDER_T TO SALES_MANAGER;

GRANT SELECT, UPDATE ON CUSTOMER TO SALES_MANAGER;

GRANT SELECT, INSERT, UPDATE ON ARTWORK_PRICE TO SALES_MANAGER;

GRANT SELECT ON ARTWORK TO SALES_MANAGER;

CREATE USER SALES_USER IDENTIFIED BY SALES123;

GRANT SALES_MANAGER TO SALES_USER;

GRANT CREATE SESSION TO SALES_USER;

INVENTORY MANAGER:

Description: The INVENTORY_MANAGER role is responsible for managing artwork availability and pricing.

This role allows users to view and update the stock and pricing of artwork but restricts access to other tables,

such as orders. Users can create and modify artwork prices but not manage customers or orders.

CREATE ROLE INVENTORY_MANAGER;

GRANT SELECT, UPDATE ON ARTWORK TO INVENTORY_MANAGER;

GRANT SELECT, INSERT, UPDATE ON ARTWORK_PRICE TO INVENTORY_MANAGER;

CREATE USER INVENTORY_USER IDENTIFIED BY INVENTORY123;

GRANT INVENTORY_MANAGER TO INVENTORY_USER;

GRANT CREATE SESSION TO INVENTORY_USER;

CUSTOMER_SUPPORT:

Description: The CUSTOMER_SUPPORT role assists customers with orders and inquiries. It allows users to

view orders, customers, and artwork information, and update order statuses. This role helps customer support

staff assist customers but does not allow managing artwork prices or customers directly.

Assist customers with orders and inquiries.

CREATE ROLE CUSTOMER_SUPPORT;

GRANT SELECT ON ORDER_T TO CUSTOMER_SUPPORT;

GRANT SELECT ON CUSTOMER TO CUSTOMER_SUPPORT;

GRANT SELECT ON ARTWORK TO CUSTOMER_SUPPORT;

GRANT UPDATE ON ORDER_T TO CUSTOMER_SUPPORT;

CREATE USER SUPPORT_USER IDENTIFIED BY SUPPORT123;

GRANT CUSTOMER_SUPPORT TO SUPPORT_USER;

GRANT CREATE SESSION TO SUPPORT_USER;

Database size estimate:

For 5 records in each table, the total database size is approximately 6.5 KB (data only).

1. PERSON:

 Row size: 1049 bytes.

 Table size: 1049×5 = 5245 bytes.

2. CUSTOMER:

 Row size: 67 bytes.

 Table size: 67×5= 335 bytes.

3. EMPLOYEE:

 Row size: 356 bytes.

 Table size: 356×5= 1780 bytes.

4. ARTIST:

 Row size: = 460 bytes.

 Table size: 460×5 = 575 bytes.

5. ORDER_T:

 Row size: 487 bytes.

 Table size: 487×5 = 2435 bytes.

6. ARTWORK:

 Row size: 807 bytes.

 Table size: 807×5 = 4035 bytes.

7. ORDERLINE:

 Row size: 120 bytes.

 Table size: 120×5 = 600 bytes.

8. Artwork_Price:

 Row size: 78 bytes.

 Table size: 78×5= 390 bytes.

9. EVENT:

 Row size: 674 bytes.

 Table size: 674×5 = 3370 bytes.

10. TICKET:

 Row size: 219 bytes.

 Table size: 219×5=1095 bytes.

11. EVENT_EMPLOYEE:

 Row size: 469 bytes.

 Table size: 469×5 = 2345 bytes.

12. EVENT_ARTWORK:

 Row size: 267 bytes.

 Table size: 267×5= 1335 bytes.

Total Database Size:

Summing up all the table sizes: 23540 bytes (≈23.5 KB).

